employee from 01.01.2022 to 01.01.2025
Vyatka State University (Institute of Chemistry and Ecology, associate professor)
employee from 01.01.2017 to 01.01.2025
employee from 01.01.1988 to 01.01.2025
VAK Russia 4.1.1
VAK Russia 4.1.2
VAK Russia 4.1.3
VAK Russia 4.1.4
VAK Russia 4.1.5
VAK Russia 4.2.1
VAK Russia 4.2.2
VAK Russia 4.2.3
VAK Russia 4.2.4
VAK Russia 4.2.5
VAK Russia 4.3.3
VAK Russia 4.3.5
UDC 57.04
UDC 633.162
UDC 57.084.1
CSCSTI 34.00
CSCSTI 62.00
The aim of the study is to comparatively evaluate the response of regenerated and original barley genotypes to soil stressors in terms of changes in morphometric and biochemical parameters of leaves. The work was carried out in 2024 at the Federal Scientific Center of the North-East (Kirov, Kirov Region, Russia). The object of the study was spring barley (Hordeum vulgare L.) variety ‘Boyarin’ and its second-generation regenerated lines. Sod-podzolic loamy soil was used for the experiment. Four soil backgrounds were simulated: control, with excess cadmium, acidic, and drought. Plants were grown under natural conditions. Leaves for the study were selected at the heading stage. Leaf length positively correlated with productivity (r = 0.49) against an acidic background; negatively – against a soil background containing cadmium and under drought (r = –0.48 and r = –0.75). Changes in leaf length and area were closely related to productivity in the original variety (r = 0.77...0.75) and the RA-PEG regenerant (r = 0.99...0.82). Regardless of soil conditions, the original variety was characterized by 45–73 % lower chlorophyll a content than the regenerants; 67–110 % lower chlorophyll b content; 40–80 % lower carotenoids; and 12–15 % lower total phenolic compound (PC) content. Compared with the original form, the regenerants had a higher antioxidant potential, diagnosed by the content of photosynthetic pigments and PC in the leaves. The greatest heterogeneity of genotypes in the total PC content in the leaves (CV = 10.7 %) was observed under drought. The content of chlorophyll a and carotenoids in the leaves did not differ statistically on different soil backgrounds; chlorophyll b increased by 50 % compared to the control under cadmium soil contamination. A conclusion was made about the effectiveness of the applied in vitro selection methods in obtaining regenerative genotypes capable of maintaining productivity under the influence of soil stressors.
barley, length, area, chlorophyll, phenolic compounds, subflag leaf, acidity, drought, cadmium
1. Akar T, Avci M, Dusunceli F. Barley: Post Harvest Operations. Turkey: The Central Research Institute for Field Crops. 64 p.
2. Galickaya YuN, Tkach DG. The current state and prospects of the russian grain industry. Economy and Business: Theory and Practice. 2025;3(121):61-65. (In Russ.). DOI:https://doi.org/10.24412/2411-0450-2025-3-61-65. EDN: https://elibrary.ru/RMUUFU.
3. Yadav S, Sharma KD. Molecular and morphophysiological analysis of drought stress in plants. In: Plant Growth. London: Intech Open; 2016. Vol. 10. DOI:https://doi.org/10.5772/65246.
4. Kruglova NN, Seldimirova OA, Zinatullina AE. Callus as a model system for studying plant stress resistance to abiotic factors (using cereals as an example). Advances Current Biology. 2018. 138(3)283-293. (In Russ.). DOI:https://doi.org/10.7868/S0042132418030067. EDN: https://elibrary.ru/XUKMZF.
5. Lugovtsova SYu, Stupko VYu. Estimation of the stability of barley regenerated lines within the current breeding process. Grain Economy of Russia. 2022;5:26-32. (In Russ.). DOI:https://doi.org/10.31367/2079-8725-2022-82-5-26-32. EDN: https://elibrary.ru/FPQVDN.
6. Tovstik EV, Shupletsova ON, Shchennikova IN. Genotypical response of barley to increased cadmium content in soil. Siberian herald of agricultural science. 2023;53(7):13-21. (In Russ.). DOI:https://doi.org/10.26898/0370-8799-2023-7-2. EDN: https://elibrary.ru/NHUPCP.
7. Shchennikova IN, Shupletsova ON, Kokina LP. Biotechnology in the creation of spring barley varieties. Russian agricultural science. 2022;3:28-32. (In Russ.). DOI:https://doi.org/10.31857/S2500262722030061. EDN: https://elibrary.ru/GCEZKP.
8. Batalova GA, Lisitsyn EM. Correlation analysis of parameters of the assimilation apparatus of oats and productivity elements. Nexo Scientific Journal. 2021;34(01):379-389. DOI:https://doi.org/10.5377/nexo.v34i01.11315.
9. Nowak R, Szczepanek M, Błaszczyk K, et al. Response of photosynthetic efficiency parameters and leaf area index of alternative barley genotypes to increasing sowing density. Scientific Reports. 2024;14:29779. DOI:https://doi.org/10.1038/s41598-024-81783-3. EDN: https://elibrary.ru/DYPJBM.
10. Rucińska-Sobkowiak R. Water relations in plants subjected to heavy metal stresses. Acta Physiologiae Plantarum. 2016;38:1-13. DOI:https://doi.org/10.1007/s11738-016-2277-5. EDN: https://elibrary.ru/XTULBZ.
11. Jia Q, Wang YP. Relationships between Leaf Area Index and Evapotranspiration and Crop Coefficient of Hilly Apple Orchard in the Loess Plateau. Water. 2021;13(14):1957. DOI:https://doi.org/10.3390/w13141957. EDN: https://elibrary.ru/MEVVBB.
12. Lichtenthaler HK, Bushmann C. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spec-troscopy. Current Protocols in Food Analytical Chemistry. 2001: F4.3.1–F4.3.8. DOI:https://doi.org/10.1002/0471142913.faf0403s01.
13. Sheromov AM, Tovstik EV, Shupletsova ON. Validation of a method for determining free and bound polyphenols in barley plants by spectrophotometry. Ekobiotekh. 2024;7(2):80-85. (In Russ.). DOI:https://doi.org/10.31163/2618-964X-2024-7-2-80-85. EDN: https://elibrary.ru/ABQUAL.
14. Vassilev A, Tsonev T, Yordanov I. Physiological response of barley plants (Hordeum vulgare) to cadmium contamination in soil during ontogenesis. Environmental Pollution. 1998;103(2-3):287-293. DOI:https://doi.org/10.1016/S0269-7491(98)00110-9. EDN: https://elibrary.ru/ABYFAJ.
15. Elakhdar A, Solanki S, Kubo T, et al. Barley with improved drought tolerance: Challenges and perspectives. Environmental and Experimental Botany. 2022;201:104965. DOI:https://doi.org/10.1016/j.envexpbot.2022.104965. EDN: https://elibrary.ru/JMJWGM.
16. Ahmad MSA, Javed F, Ashraf M. Iso-osmotic effect of NaCl and PEG on growth, cations and free proline accumulation in callus tissue of two indica rice (Oryza sativa L.) genotypes. Plant Growth Regul. 2007;53:53-63. DOI:https://doi.org/10.1007/s10725-007-9204-0. EDN: https://elibrary.ru/AXHODI.
17. Shellakkutti N, Thangamani PD, Suresh K, et al. Cuticular transpiration is not affected by enhanced wax and cutin amounts in response to osmotic stress in barley. Physiologia Plantarum. 2022;174(4):e13735. DOI:https://doi.org/10.1111/ppl.13735. EDN: https://elibrary.ru/KGVGXB.
18. Toulotte JM, Pantazopoulou CK, Sanclemente MA, et al. Water stress resilient cereal crops: Lessons from wild relatives. Journal of Integrative Plant Biology. 2022;64(2):412-430. DOI:https://doi.org/10.1111/jipb.13222. EDN: https://elibrary.ru/FWXLFL.
19. Fedorova DG, Galaktionova LV. Analysis of the variability of morphometric and physiological parameters of grain crops when using biofertilizers. Grain Economy of Russia. 2024;16(1):89-96. (In Russ.). DOI:https://doi.org/10.31367/2079-8725-2024-90-1-89-9624. EDN: https://elibrary.ru/CIZPPF.
20. Fedorova DG, Nazarova NM, Ukenov BS. Activity of photosynthetic pigments and the antioxidant system in sunflower under drought stress. Proceedings on applied botany, genetics and breeding. 2024;185(3):71-77. (In Russ.). DOI:https://doi.org/10.30901/2227-8834-2024-3-71-77. EDN: https://elibrary.ru/SUBRYZ.
21. Szczepanek M, Nowak R, Błaszczyk K. Physiological and Agronomic Characteristics of Alternative Black Barley Genotypes (Hordeum vulgare var. nigricans and H. v. var. rimpaui) under Different Hydrothermal Conditions of the Growing Seasons. Agriculture. 2023;13:2033. DOI:https://doi.org/10.3390/agriculture13102033. EDN: https://elibrary.ru/HJLKIK.
22. Özyiğit İİ, Abakirova A, Hocaoğlu-özyiğit A, et al. Cadmium stress in barley seedlings: Accumulation, growth, anatomy and physiology. International Journal of Life Sciences and Biotechnology. 2021;4(2):204-223. DOI:https://doi.org/10.38001/ijlsb.833611. EDN: https://elibrary.ru/LCUNOF.
23. Burton KW, King JB, Morgan E. Chlorophyll as an indicator of the upper critical tissue concentration of cadmium in plants. Water, Air, and Soil Pollution. 1986;27(1-2):147-154. DOI:https://doi.org/10.1007/bf00464777. EDN: https://elibrary.ru/KEMYYJ.
24. Hongyi Z, Juelan G, Qing L, et al. Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Scientific reports. 2021;11(1):9913-11:9913. DOI: 0.1038/s41598-021-89322-0. EDN: https://elibrary.ru/NWCWFC.
25. Muhammad L, Salahuddin KA, Zhou Y, et al. Physiological and Ultrastructural Changes in Dendranthema morifolium Cultivars Exposed to Different Cadmium Stress Conditions. Agriculture. 2023;13:317. DOI:https://doi.org/10.3390/agriculture13020317. EDN: https://elibrary.ru/SIEWYK.
26. Tuladhar P, Sasidharan S, Saudagar P. Role of phenols and polyphenols in plant defense response to biotic and abiotic stresses. Biocontrol Agents and Secondary Metabolites. Applications and Immunization for Plant Growth and Protection. 2021:419-441. DOI:https://doi.org/10.1016/B978-0-12-822919-4.00017-X.
27. Elguera JCT, Barrientos EY, Wrobel K, et al. Effect of cadmium (Cd(II)), selenium (Se(IV)) and their mixtures on phenolic compounds and antioxidant capacity in Lepidium sativum. Acta Physiologiae Plantarum. 2013;35:431-441. DOI:https://doi.org/10.1007/s11738-012-1086-8. EDN: https://elibrary.ru/HQFHXC.
28. Hura T, Hura K, Ostrowska A, et al. Non-rolling flag leaves use an effective mechanism to reduce water loss and light-induced damage under drought stress. Annals of Botany. 2022;130(3):393-408. DOI:https://doi.org/10.1093/aob/mcac035. EDN: https://elibrary.ru/ATMVPF.
29. Janczak-Pieniazek M, Cichonski J, Michalik P, et al. Effect of heavy metal stress on phenolic compounds accumulation in winter wheat plants. Molecules. 2023;28(1):241. DOI:https://doi.org/10.3390/molecules28010241. EDN: https://elibrary.ru/IUDTMX.
30. Šamec D, Karalija E, Šola I, et al. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants. 2021;10:118. DOI:https://doi.org/10.3390/plants10010118. EDN: https://elibrary.ru/UYGTDI.




