DEVELOPMENT OF BIOTECHNOLOGICAL METHODS FOR THE MEDIUM-TERM PRESERVATION OF HOPS IN VITRO
Rubrics: AGRONOMY
Abstract and keywords
Abstract:
The objective of the study is to develop effective biotechnological methods for the medium-term preservation of collection hop accessions in vitro using nutrient media, allowing for increased interpassage periods while maintaining crop viability. Research was conducted at the Altai Center for Applied Biotechnology (Altai State University, Barnaul) in 2025. The effects of glucose, mannitol, calcium nitrate (Ca(NO3)2), chlorocholine chloride (CCC), salicylic acid, abscisic acid (ABA), kanamycin, cefotaxime, and the composition of macro- and microelements in the MS nutrient medium on the medium-term preservation of five hop varieties in vitro were studied. The effectiveness of the nutrient media depends on the genotypes of the hop accessions being preserved. Media supplemented with 3.5 mg/l Ca(NO3)2 maintained the viability of regenerated Favorit and Bryansky varieties at 95 % for 12 months. On this medium, the Taurus variety demonstrated maximum viability (30 %). A 1 mg/L ABA content in the medium ensured 90–100 % survival of the crops for 6–7 months, while the Tsivilsky and Bryansky varieties had a viability of 40 % after one year of cultivation. The use of mannitol and SSS showed limited effectiveness, depending heavily on concentration and varietal characteristics. The antibiotic cefotaxime proved its potential, preserving up to 80 % of viable explants, while kanamycin proved phytotoxic and led to the death of regenerated hops. The developed protocols allow the preservation of promising hop genotypes for up to 12 months in direct culture, which is of great importance for the creation of biotechnological collections, reducing labor costs, and the commercial application of clonal micropropagation technology.

Keywords:
Humulus lupulus L., direct cultivation, biotechnological collections, genetic diversity, morphogenesis, nutrient medium
References

1. Kaya E. Importance of Plant Biodiversity and longterm Conservation of Plant Genetic Resources via Biotechnological Strategies. Journal of Biosciences and Medicines. 2024;12:584-591. DOI: 10.4236/ jbm.2024.1211044.

2. Benelli C, Tarraf W, Izgu T, et al. In vitro conservation through slow growth storage technique of fruit species: an overview of the last 10 years. Plants. 2022;11:3188. DOI:https://doi.org/10.3390/plants11233188.

3. Convention on Biological Diversity: adopted in Rio de Janeiro on 05.06.1992. Available at: https://cbd.int/convention/text. Accessed: 07.25.2025.

4. Khlestkina EK, Chukhina IG. Plant genetic resources: conservation and use strategy. Bulletin of the RAS. 2020;90(6):522-527. (In Russ.). DOI:https://doi.org/10.31857/S0869587320060043.

5. Bosse M, van Loon S. Challenges in quantifying genome erosion for conservation. Front. Genet. 2022;13:960958. DOI:https://doi.org/10.3389/fgene.2022.960958.

6. Gorbunov YuN, Kuzevanov VYa. The Role of Russian Botanical Gardens in Plant Biodiversity Conservation. In: Botanical Gardens and their role in plant conservation. European and American Botanical Gardens. Vol. 3. CRC Press., 2023:63-89. DOI:https://doi.org/10.1201/9781003282556-4.

7. Shvachko NA, Khlestkina EK. Molecular genetic bases of seed resistance to oxidative stress during storage. Vavilov Journal of Genetics and Breeding. 2020;24(5):451-458. (In Russ.). DOI: 10.18699/ VJ20.47-o.

8. Sorokopudova OA, Artyukhova AV. To the organization of field collections of perennial herbaceous plants at the all-russian horticultural institute for breeding, agrotechnology and nursery. Pomiculture and small fruits culture in Russia. 2018;55:208-212. (In Russ.).

9. Oves EV, Gaitova NA, Shishkina OA. Maintenance of potato varieties in in vitro and field collections of the Russian Potato Research Centre. Plant Biotechnology and Breeding. 2022;5(1):28-41. (In Russ.). DOI:https://doi.org/10.30901/2658-6266-2022-1-o5.

10. Osipova YuS, Leontieva VV, Dementiev DA. Evaluation of varieties of common hop (Humulus lupulus L.) collection according to agronomic traits. Agricultural Science Euro-North-East. 2022;23(2):194-202. (In Russ.). DOI:https://doi.org/10.30766/2072-9081.2022.23.2.194-202.

11. Nikonova ZA, Korotkova ZP. Creating and preservation of collections of hop as the gene fund for breeding. Volga Region Farmland. 2017;4(45):104-108. (In Russ.). DOI:https://doi.org/10.24412/feqwlgnakhy.

12. Malyarovskaya V, Malyukova L, Koninskaya N. Effect of calcium the physiological and biochemical parameters of large-bed hydrangea (Hydrangea macrophylla Ser.) in a slow-growing culture in vitro. Fruit growing and viticulture of South Russia. 2020;66(6):270-283. (In Russ.). DOI:https://doi.org/10.30679/2219-5335-2020-6-66-270-283.

13. Nechaeva TL, Zubova MYu, Malyukova LS et al. Adaptation of In vivo and in vitro propagated Camellia sinensis (L.) Kuntze plants to the action of calcium. Subtropical and ornamental horticulture. 2021;78:66-76. (In Russ.). DOI:https://doi.org/10.31360/2225-3068-2021-78-66-76.

14. Doroshenko NP. Modification of the nutrient medium for the deposit of grape in vitro. Russian vine. 2017;6:8-16. (In Russ.).

15. Tashmatova LV, Vysotsky VA, Dzhafarova VE. Clonal micropropagation and deposition of pear in vitro. Orel; 2015. Vol. 18. (In Russ.).

16. Shabanova EA, Vnukova NI, Mashkina OS. Influence of modifications in the composition of nutrient media on the effectiveness of in vitro long-term storage of poplar and aspen clones. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2020;1:42-49. (In Russ.).

17. Silantyeva MM, Mironenko ON, Ovcharova NV, et al. Phytocenotic arrangement of the common hop in the South of Western Siberia. Proceedings on applied botany, genetics and breeding. 2024;185(4):20-31. (In Russ.). DOI:https://doi.org/10.30901/2227-8834-2024-4-20-31.

18. Gashenko OA, Kastritskaya MS, Kukharchik NV. In vitro micropropagation of hop cultivars. Subtropical and ornamental horticulture. 2019;68:111-118. (In Russ.). DOI:https://doi.org/10.31360/2225-3068-2019-68-111-118.

19. Myakisheva E, Bychkova O, Mironenko O. New elements for assessing the morphogenesis of hops regenerants in vitro. Agrarian Scientific Journal. 2024;5:40-46. (In Russ.). DOI:https://doi.org/10.28983/asj. y2024i5pp40-46. EDN: https://elibrary.ru/UGXNVZ.

20. Ivanova NN, Korzina NV, Tsyupka VA, et al. Influence of in vitro preservation on viability and genetic stability of garden plants. Taurida Herald of the Agrarian Sciences. 2024;2(38):53-66. (In Russ.). EDN: https://elibrary.ru/UPRRPG. DOI:https://doi.org/10.5281/zenodo.12178658.

21. Negi NP, Prakash G, Narwal P, et al. The calcium connection: exploring the intricacies of calcium signaling in plant-microbe interactions. Front. Plant Sci. 2023;14:1248648. DOI:https://doi.org/10.3389/fpls.2023.1248648.

22. Kumar S, Shah S, Vimala Y, et aa. Abscisic acid: Metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. Frontiers in Plant Science. 2022;13(972856). DOI:https://doi.org/10.31857/S0006813620030072.

23. Kruglova NN, Seldimirova OA, Zinatullina AE, et al. Abscisic acid in the in vitro culture explant systems. Proceedings of the RAS Ufa Scientific Centre. 2018;2:55-60. (In Russ.). DOI:https://doi.org/10.31040/2222-8349-2018-0-2-55-60.

24. Kontsevaya I. Effect of abscisic acid on depositing of the Karelian birch in vitro. Bulletin of Science and Practice. 2018;4(7):11-16. (In Russ.).

25. Malyarovskaya VI, Shurkina ES. Influence of cultivation factors on the duration of in vitro deposition of the endemic species Campanula sclerophylla Kolak. Subtropical and ornamental horticulture. 2022;81:98-106. (In Russ.). DOI:https://doi.org/10.31360/2225-3068-2022-81-98-106.

26. Lubyanova AR, Bezrukova MV, Shakirova FM. Interaction of signaling pathways in the formation of plant protective reactions in response to environmental stress factors. Russian journal of plant physiology. 2021;68(6):563-578. (In Russ.).

27. Doroshenko NP, Puzyrnova VG. Ways to slow down growth processes for creating a grapevine gene pool collection in vitro. Subtropical and ornamental horticulture. 2024;88:102-122. (In Russ.). EDN: https://elibrary.ru/UQBLAC. DOI:https://doi.org/10.31360/2225-3068-2024-88-102-122.

28. Shaporeva VA, Zmushko AA, Kolbanova EV. Effect of salicylic acid on rhyzogenesis of apple rootstock microplants in in vitro conditions. Proceedings of the National Academy of Sciences of Belarus. 2017;4:75-80.

29. Mitrofanova IV, Ivanova NN, Mitrofanova OV, et al. Features of deposition of garden chrysanthemum under in vitro conditions. Bulletin of the State Nikitsky Botanical Gardens. 2019;131:110-117. (In Russ.). DOI:https://doi.org/10.25684/NBG.boolt.131.2019.15.

30. Egorova NA, Stavtzeva IV, Kovalenko MS. Long-term storage of lavender cultivars in vitro using culture media of different compositions. Taurida Herald of the Agrarian Sciences. 2024;3(39):58-71. (In Russ.). EDN: https://elibrary.ru/PDRVBB. DOI:https://doi.org/10.5281/zenodo.13782781.

31. Sukhoparov AA, Lebedev AN, Temirov KS, et al. Influence of different methods of sterilization of pea explants when introduced into culture in vitro. International Research Journal. 2023;11(137):56-61. (In Russ.). DOI:https://doi.org/10.23670/IRJ.2023.137.56.

32. Doroshenko NP, Zhukova TV. Combined application of antibiotics gentamicin and cefotaxime for cultivation of grapevine in vitro. Russian vine. 2015;1:67-71. (In Russ.).

33. Tewelde S, Patharajan S, Teka Z, et al. Assessing the efficacy of broad‐spectrum antibiotics in controlling bacterial contamination in the in vitro micropropagation of ginger (Zingiber officinale Rosc.). The Scientific World Journal. 2020; 2020:6431301. DOI:https://doi.org/10.1155/2020/6431301.

34. Doroshenko NP, Rebrov AN, Troshin LP. Biotechnology of improvement and preservation of native don grape varieties. Scientific Journal of KubSAU. 2019;154:327-345. (In Russ.). DOI: 10.21515/ 1990-4665-154-031.

35. Kontsevaya I. Use of antibiotics to optimize micropropagation of Betula pendula var. carelica Merckl. Bulletin of Science and Practice. 2018;4(5):68-73. (In Russ.).

36. Verhaegen M, Bergot T, Liebana E, et al. On the use of antibiotics to control plant pathogenic bacteria: a genetic and genomic perspective. Front. Microbiol. 2023;14:1221478. DOI:https://doi.org/10.3389/fmicb.2023. 1221478.


Login or Create
* Forgot password?