graduate student from 01.01.2022 to 01.01.2025
Tambov State University after G. R. Derzhavin
Tambov State University after G. R. Derzhavin (Department of Mathematical Modeling and Information Technology, Professor)
employee from 01.01.2005 to 01.01.2025
Tambov, Tambov, Russian Federation
graduate student
Tambov State University after G. R. Derzhavin (Department of Mathematical Modeling and Information Technology, graduate student)
graduate student from 01.01.2023 to 01.01.2025
Tambov, Tambov, Russian Federation
graduate student from 01.01.2025 to 01.01.2025
VAK Russia 4.1.2
VAK Russia 4.1.3
VAK Russia 4.1.4
VAK Russia 4.1.5
VAK Russia 4.2.1
VAK Russia 4.2.2
VAK Russia 4.2.3
VAK Russia 4.2.4
VAK Russia 4.2.5
VAK Russia 4.3.3
VAK Russia 4.3.5
UDC 66
UDC 66.081.6
The objective of the study is to analyze the development dynamics of instrumentation for intensifying membrane concentration (separation) processes for liquid process solutions based on inventive practice in the food and processing industries, as well as to identify the basic structural components and technical results characterizing them. The object of the study is the instrumentation for membrane separation and concentration of liquid heterogeneous systems in the food and processing industries of the agro-industrial complex. The research methods include a systems analysis of the development dynamics of design solutions and a review of the problem field, as well as a statistical method for quantifying the intensity of inventive activity to improve membrane apparatuses for concentrating and separating liquid media. Primary attention is paid to a comparative analysis of designs and their advantages and disadvantages, such as material consumption, operational complexity, hydraulic resistance, etc. The conducted analysis of literary and patent data revealed four main classes of devices for baromembrane concentration (separation) of solutions with the intensification of the process by applying a constant current density: electric baromembrane devices of the flat-frame (flat-chamber) type (EBMAPT), EBMATT (tubular type), EBMART (roll type), EBMAKT (combined type). The analysis of the research results showed: 1) EBMAPT provide the productivity acceptable for production, but their use requires significant material costs; 2) EBMATT are compact and efficient, but difficult to operate; 3) EBMART have a high filtration area and productivity, but their repair is difficult; 4) EBMAKT combine the advantages of flat-chamber and tubular type devices, but the length of their separation channel is large, which affects the hydraulic resistance. Based on an analysis of the hardware design of various types of membrane devices for intensifying membrane concentration (separation) of liquid food systems, a classification scheme based on design is proposed.
membrane concentration (separation), hardware design, separation process, food industry
1. Karpenko DV, Dyshekova MM. Napitki na osnove produktov pererabotki sakharnogo trostnika. Khranenie i pererabotka sel'khozsyr'ya. 2021;(1):138-156. (In Russ.). DOI:https://doi.org/10.36107/spfp.2021.197. EDN: https://elibrary.ru/WBPPKQ.
2. Lukin ND, Kudryashov VL. Oblasti primeneniya, effektivnost' i perspektivy ispol'zovaniya baromembrannykh protsessov v APK. Khranenie i pererabotka sel'khozsyr'ya. 2017;(12):44-52. (In Russ.). EDN: https://elibrary.ru/YMTKVF.
3. Kudryashov VL. Nanofiltratsiya – perspektivnyy sposob podgotovki vody dlya proizvodstva spirta. Proizvodstvo spirta i likerovodochnykh izdeliy. 2011;(3):24-27. (In Russ.). EDN: https://elibrary.ru/OIIEAZ.
4. Kovaleva OA, Kovalev SV. Razdelenie poslespirtovoy melassnoy bardy na poristykh membranakh UFM-50®, UPM-50M®, OPMN-P® i OFAM-K®. Membrany i membrannye tekhnologii. 2017;7(3):213-224. (In Russ.). DOI:https://doi.org/10.1134/S221811721703004X. EDN: https://elibrary.ru/YTFQUF.
5. Kovaleva OA. Kontsentrirovanie sakharnogo rastvora razlichnykh proizvoditelei nanofiltratsionnymi membranami OFAM-K i OPMN-P. Sakhar. 2017;(7):24-27. (In Russ.). EDN: https://elibrary.ru/ZBIVHR.
6. Kovaleva OA, Lazarev SI. Issledovanie protsessa obratnoosmoticheskogo razdeleniya tekhnologicheskikh rastvorov proizvodstv kukuruznogo krakhmala. Tekhnika i tekhnologiya pishchevykh proizvodstv. 2016;4:110-115. (In Russ.). EDN: https://elibrary.ru/XELEQB.
7. Klyuchnikov AI, Kazartsev DA, Zhukovskaya SV, et al. Adaptatsiya protsessa mikrofiltatsii k tekhnologicheskim protsessam fil'trovaniya piva. Agroprovyshlennye tekhnologii Tsentral'noi Rossii. 2023;4(30):20-30. (In Russ.). DOI:https://doi.org/10.24888/2541-7835-2023-30-20-30. EDN: https://elibrary.ru/IHDBKL.
8. Klyuchnikov AI. Razvitie membrannoi tekhniki, realizuyushchei gidrodinamicheskuyu neustoichivost' na mezhfaznoi granitse "membrana – iskhodnyi rastvor". Agroprovyshlennye tekhnologii Tsentral'noi Rossii. 2023;3(29):99-115. (In Russ.). DOI:https://doi.org/10.24888/2541-7835-2023-29-99-115. EDN: https://elibrary.ru/LSZDUF.
9. Nikulina OK, Yakovleva MR, Koloskova OV, et al. Razrabotka sposoba polucheniya sakhara na osnovanii nauchno-tekhnologicheskikh aspektov ochistki poluproduktov sakharnogo proizvodstva s ispol'zovaniem elektromembrannoi obrabotki. Pishchevaya promyshlennost': nauka i tekhnologii. 2024;17(3):17-23. (In Russ.). EDN: https://elibrary.ru/CJSJWD.
10. Nikulina OK, Yakovleva MR, Koloskova OV. Razrabotka sposoba polucheniya sakhara s ispol'zovaniem metoda elektrodializa v tselyakh povysheniya effektivnosti raboty sakharnykh predpriyatii. Pishchevaya promyshlennost': nauka i tekhnologii. 2024;17(4):27-34. (In Russ.). EDN: https://elibrary.ru/URYCXA.
11. Nikulina OK, Dymar OV, Koloskova OV, et al. Primenenie kombinatsii baro- i elektromembrannykh metodov obrabotki dlya ochistki diffuzionnogo soka. Sakhar. 2022;(3):22-26. (In Russ.). DOI:https://doi.org/10.24412/2413-5518-2022-3-22-26. EDN: https://elibrary.ru/FNVSPM.
12. Nikulina OK, Dymar OV, Koloskova OV, et al. Primenenie elektromembrannykh metodov obrabotki dlya ochistki gustykh poluproduktov sakharnogo proizvodstva. Sakhar. 2022;(4):26-31. (In Russ.). DOI:https://doi.org/10.24412/2413-5518-2022-4-26-31. EDN: https://elibrary.ru/VHOORH.
13. Lazarev VA, Timakova RT, Tikhonov SL, et al. Tsentralizovannaya pererabotka syvorotki. Molochnaya promyshlennost'. 2021;(10):30-32. (In Russ.). DOI:https://doi.org/10.31515/1019-8946-2021-10-30-32. EDN: https://elibrary.ru/DBEYBG.
14. Kastychik AS, Shaposhnik VA. Deionizatsiya vody elektrodializom s ionoobmennymi membranami, granulami i setkami. Sorbtsionnye i khromatograficheskie protsessy. 2009;9(1):51-57. (In Russ.). EDN: https://elibrary.ru/KBXNHF.
15. Vasil'eva VI, Shaposhnik VA, Akberova EM, et al. Kontsentratsionnoe pole v rastvore na granitse s ionoobmennymi membranami pri nestatsionarnom elektrodialize. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Khimiya. Biologiya. Farmatsiya. 2011;(1):15-20. (In Russ.). EDN: https://elibrary.ru/OBLOUJ.
16. Kozaderova OA, Shaposhnik VA, Shaposhnik DA. Kolebatel'naya neustoichivost' kontsentratsionnogo polya v sopryazhennykh sektsiyakh kontsentrirovaniya i obessolivaniya pri intensivnykh rezhimakh elektrodializa. Sorbtsionnye i khromatograficheskie protsessy. 2009;9(3):345-353. (In Russ.). EDN: https://elibrary.ru/KNVSPH.
17. Zmievskii YG. Determination of critical pressure in membrane distillation process. Membranes and membrane technologies. 2015;5(1):57. (In Russ.). DOI:https://doi.org/10.1134/S2218117215010113. EDN: https://elibrary.ru/TFVTBT.
18. Zmievskii YG, Kirichuk II, Mironchuk VG, et al. Chemical Cleaning of Nanofiltration Membranes after Whey Separation. Membranes and membrane technologies. 2014;4(2):149. (In Russ.). DOI:https://doi.org/10.1134/S2218117214020102. EDN: https://elibrary.ru/SAJCWX.
19. Mironchuk VG, Grushevskaya IO, Kucheruk DD, et al. Experimental study of the effect of high pressure on the efficiency of whey nanofiltration process using an OPMN-P membrane. Membranes and membrane technologies. 2013;3(1):3. (In Russ.). DOI:https://doi.org/10.1134/S2218117212040062. EDN: https://elibrary.ru/PNSZBR.
20. Kotov VV, Peregonchaya OV. Razdelenie sul'fo-khlornykh smesei elektrodializom s anionobmennymi membranami, sorbirovavshimi pektin. Sorbtsionnye i khromatograficheskie protsessy. 2015;15(4):502-507. (In Russ.). EDN: https://elibrary.ru/VWHSJH.
21. Bodyakina IM, Kotov VV, Netsesova GA, et al. Elektrodializ pektinsoderzhashchikh rastvorov khlorovodorodnoi kisloty s ionoobmennymi membranami. Elektrokhimiya. 2013;49(3):328-331. (In Russ.). DOI:https://doi.org/10.7868/S0424857013030055. EDN: https://elibrary.ru/PUXWUT.
22. Semenov EV, Slavianskii AA. Analysis of the suspension of the separation process in the hydrocyclone (for example, starch treacle production). Storage and Processing of Farm Products. 2016;(7):52-57. (In Russ.). EDN: https://elibrary.ru/WKTZQH.
23. Semenov EV, Slavianskii AA, Makarova SA, Deshevaia IY. Simulation of process of separation of the suspension in rotor auger filtering centrifuge. Storage and Processing of Farm Products. 2016;(5):42-48. (In Russ.). EDN: https://elibrary.ru/WDNVTV.
24. Semenov EV, Slavianskii AA, Lebedeva NN. Especially the separation centrifuge rotor suspension of periodic action. Storage and Processing of Farm Products. 2016;(2):49-52. (In Russ.). EDN: https://elibrary.ru/VOUHPR.
25. Lazarev SI, Korobov VB, Konovalov VI. Membrannyi apparat s ploskimi fil'truyushchimi elementami. Avtorskoe svidetel'stvo № 1745284 A1. 21.03.1989. Byul. 25. (In Russ.). EDN: https://elibrary.ru/AVUXHP.
26. Lazarev SI, Viazovov SA, Riabinskii MA. Elektrobarmembrannyi apparat ploskokamernogo tipa. Patent RF № 2324529 C2. 10.01.2006. Byul. 14. (In Russ.). EDN: https://elibrary.ru/ZJMXKH.
27. Kovalev SV, Lazarev SI, Chepeniak PA, Danilov AYu, Lazarev KS. Elektrobarmembrannyi apparat ploskokamernogo tipa. Patent RF № 2403957 C1. 11.03.2009. Byul. 32. (In Russ.). EDN: https://elibrary.ru/RKYUGD.
28. Kovalev SV, Lazarev SI, Kazakov VG. Elektrobarmembrannyi apparat ploskokamernogo tipa. Patent RF № 2528263 C1. 11.04.2013. Byul. 18. (In Russ.). EDN: https://elibrary.ru/ZFRHCH.
29. Lazarev SI, Kovalev SV, Konovalov DN. Elektrobarmembrannyi apparat ploskokamernogo tipa. Patent RF № 2689617 C1. 06.08.2018. Byul. 16. (In Russ.). EDN: https://elibrary.ru/DINZWZ.
30. Konovalov DN, Lazarev SI, Lomakina VA. Elektrobarmembrannyi apparat ploskokamernogo tipa. Patent RF № 2832310 C1. 27.06.2024. Byul. 36. (In Russ.). EDN: https://elibrary.ru/XDZOTS.
31. Lazarev SI, Kovalev SV, Konovalov DN, Lua P, Kotenev SI. Elektrobarmembrannyi apparat ploskokamernogo tipa. Patent RF № 2718402 C1. 2020. Byul. 10. (In Russ.). EDN: https://elibrary.ru/TKQDTT.
32. Kovalev SV, Kovaleva OA, Sedoplatov IS. Elektrobarmembrannyi apparat ploskokamernogo tipa. Patent RF № 2820720 C1. 07.12.2023. Byul. 16. (In Russ.). EDN: https://elibrary.ru/DDRWEK.
33. Lazarev SI, Kovalev SV, Konovalov DN, Kovaleva OA, Levin AA. Elektrobarmembrannyi apparat ploskokamernogo tipa. Patent RF № 2744408 C1. 07.07.2020. Byul. 7. (In Russ.). EDN: https://elibrary.ru/LFBBLY.
34. Lazarev SI, Kovalev SV, Viazovov SA, Bogomolov VY. Elektrobarmembrannyi apparat s ploskimi fil'truyushchimi elementami. Patent RF № 2532813 C1. 07.05.2013. Byul. 31. (In Russ.). EDN: https://elibrary.ru/ZZULKG.
35. Bogomolov VY, Lazarev SI, Kovalev SV, Viazovov SA. Elektrobarmembrannyi apparat s ploskimi okhlazhdayushchimi kamerami. Patent RF № 2624695 C1. 13.03.2017. Byul. 19. (In Russ.). EDN: https://elibrary.ru/ZTXXUL.
36. Lazarev SI, Konovalov DN, Krylov AV, Lazarev DS, Konovalov DD. Elektrobarmembrannyi apparat ploskokamernogo tipa. Patent RF № 2806446 C1. 20.04.2023. Byul. 31. (In Russ.). EDN: https://elibrary.ru/XFQAQG.
37. Konovalov DN, Lazarev SI, Lomakina VA, Konovalov DD, Dolgova OV, Abonosimov MO. Elektrobarmembrannyi apparat ploskokamernogo tipa. Patent RF № 2821449 C1. 25.01.2024. Byul. 18. (In Russ.). EDN: https://elibrary.ru/ZOGEQL.
38. Kovaleva OA, Lazarev SI, Popov RV, Kochetov VI, Lazarev DS. Elektrobarmembrannyi apparat trubchatogo tipa. Patent RF № 2625669 C1. 10.03.2016. Byul. 17. (In Russ.). EDN: https://elibrary.ru/XGLACJ.
39. Lazarev SI, Kovalev SV, Rodionov DA. Elektrobarmembrannyi apparat trubchatogo tipa. Patent RF № 2685091 C1. 06.08.2018. Byul. 11. (In Russ.). EDN: https://elibrary.ru/ZDTAQX.
40. Kovalev SV. Klassifikatsiya elektrobarmembrannykh apparatov. Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki. 2015;20(1):245-251. (In Russ.). EDN: https://elibrary.ru/UZAWUR.
41. Lazarev SI, Khorokhorina IV, Kovalev SV, Mikhailin MI. Elektrobarmembrannyi apparat trubchatogo tipa. Patent RF № 2716121 C1. 27.06.2019. Byul. 7. (In Russ.). EDN: https://elibrary.ru/UTOVRI.
42. Lazarev SI, Kovalev SV, Khokhlov PA, Shestakov KV. Elektrobarmembrannyi apparat trubchatogo tipa. Patent RF № 2700333 C1. 23.01.2019: Byul. 26. (In Russ.). EDN: https://elibrary.ru/UQZDFZ.
43. Lazarev SI, Kovalev SV, Khokhlov PA, Levin AA. Elektrobarmembrannyi apparat trubchatogo tipa. Patent RF № 2718037 C1. 13.12.2019. Byul. 10. (In Russ.). EDN: https://elibrary.ru/YRKMPZ.
44. Kovalev SV, Sedoplatov IS, Kovaleva OA. Elektrobarmembrannyi apparat trubchatogo tipa. Patent RF № 2803966 C1. 25.09.2023. (In Russ.). EDN: https://elibrary.ru/HUXKCW.
45. Sedoplatov IS, Kovaleva OA, Kovalev SV. Sistemnyi podkhod k proektirovaniyu i matematicheskomu opisaniiu konstruktsii elektromembrannogo apparata trubchatogo tipa. In: XXXIV Mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Prioritetnye napravleniia razvitiia nauki i tekhnologii”, Tula, 30 May 2024. Tula; 2024. P. 9–11. (In Russ.). EDN: https://elibrary.ru/GZQRIY.
46. Lazarev SI, Korobov VB, Konovalov VI. Membrannyi apparat. Avtorskoe svidetel'stvo № 1681926 A1. 24.05.1989. Byul. 37. (In Russ.). EDN: https://elibrary.ru/VGPFNW.
47. Kovalev SV, Lazarev SI, Golovashin VL, Lavronchenko AA, Abonosimov DO. Elektrobarmembrannyi apparat trubchatogo tipa. Patent RF № 2540363 C1. 13.08.2013. Byul. 4. (In Russ.). EDN: https://elibrary.ru/ZFEUYX.
48. Lazarev SI, Kovalev SV, Strel'nikov AE, Popov RV, Kovaleva OA, Lazarev DS, Vyazovov SA. Elektrobarmembrannyi apparat trubchatogo tipa. Patent RF № 2625116 C1. 09.03.2016. Byul. 20. (In Russ.). EDN: https://elibrary.ru/ZTYBIT.
49. Lazarev SI, Golovashin VL, Mamontov VV. Elektrobarmembrannyi apparat trubchatogo tipa. Patent RF № 2273512 C2. 07.06.2004. Byul. 10. (In Russ.). EDN: https://elibrary.ru/SYNKFU.
50. Lazarev SI, Kotel'nikova IV, Lavrenchenko AA, et al. Primenenie elektrobarmembrannogo apparata trubchatogo tipa v protsesse ochistki i utilizatsii stochnykh vod. Nauka i biznes: puti razvitiia. 2012;4(10):45-47. (In Russ.). EDN: https://elibrary.ru/OYFNFX.
51. Lazarev SI, Kotel'nikova IV, Golovashin VL. Elektrobarmembrannyi apparat trubchatogo tipa. Zayavka na izobretenie RF № 2012111234 A. 23.03.2012. (In Russ.).
52. Lazarev SI, Konovalov DN, Malin PM, Bryankin KV, Pudovkina PA. Elektrobarmembrannyi apparat trubchatogo tipa. Patent RF № 2812596 C1. 04.07.2023. Byul. 4. (In Russ.). EDN: https://elibrary.ru/EXHYGT.
53. Lazarev SI, Konovalov DN, Galkin PA, Malin PM, Strel'nikov AM. Elektrobarmembrannyi apparat trubchatogo tipa. Patent RF № 2798919 C1. 01.12.2022. Byul. 19. (In Russ.). EDN: https://elibrary.ru/IESKJH.
54. Konovalov DN, Lazarev SI, Dolgova OV, Istomina MA, Konovalov DD. Elektrobarmembrannyi apparat trubchatogo tipa. Patent RF № 2826557 C1. 05.02.2024. Byul. 26. (In Russ.). EDN: https://elibrary.ru/MGSXZM.
55. Lazarev SI, Konovalov DN, Antipova AA, Pudovkina TA. Elektrobarmembrannyi apparat trubchatogo tipa. Patent RF № 2838235 C1. 30.09.2024. Byul. 11. (In Russ.). EDN: https://elibrary.ru/DJMEMO.
56. Lazarev SI, Gorbachev AS, Abonosimov OA. Elektrobarmembrannyi apparat rulonnogo tipa. Patent RF № 2268085 C2. 22.03.2004. Byul. 2. (In Russ.). EDN: https://elibrary.ru/MOPEPB.
57. Lazarev SI, Gorbachev AS, Kormil'tsin GS, et al. Kinetika elektrobarmembrannogo razdeleniya vodnykh sul'fatsoderzhashchikh rastvorov. Kondensirovannye sredy i mezhfaznye granitsy. 2008;10(1):29-34. (In Russ.). EDN: https://elibrary.ru/JSIRHF.
58. Lazarev SI, Kovalev SV, Abonosimov OA, Ansimova ZA, Lazarev KS. Elektrobarmembrannyi apparat rulonnogo tipa. Patent RF № 2411986 C2. 13.10.2008. Byul. 11. (In Russ.). EDN: https://elibrary.ru/ZKTLUL.
59. Kovalev SV, Lazarev SI, Solomina OA, Lazarev KS. Elektrobarmembrannyi apparat rulonnogo tipa. Patent RF № 2487746 C1. 01.06.2012. Byul. 20. (In Russ.). EDN: https://elibrary.ru/RLWAES.
60. Kovalev SV, Lazarev SI, Abonosimov OA, Solomina OA, Lazarev KS. Elektrobarmembrannyi apparat rulonnogo tipa. Patent RF № 2522882 C1. 15.04.2013. Byul. 20. (In Russ.). EDN: https://elibrary.ru/SAJAAG.
61. Lazarev SI, Abonosimov OA, Riabinskii MA. Elektrobarmembrannyi apparat rulonnogo tipa. Patent RF № 2326721 C2. 31.07.2006. Byul. 17. (In Russ.). EDN: https://elibrary.ru/ELAXXA.
62. Kovalev SV, Lazarev SI. Elektrobarmembrannyi apparat rulonnogo tipa. Patent RF № 2553859 C1. 12.03.2014. Byul. 17. (In Russ.). EDN: https://elibrary.ru/OMCPZR.
63. Lazarev SI, Kovalev SV, Mikhailin MI, Khokhlov PA. Elektrobarmembrannyi apparat rulonnogo tipa. Patent RF № 2752479 C1. 29.12.2020. Byul. 22. (In Russ.). EDN: https://elibrary.ru/RBPFEW.
64. Lazarev SI, Kovalev SV, Rodionov DA, Kovaleva OA, Ryzhkin VYu, Lazarev DS, Bogomolov VYu. Elektrobarmembrannyi apparat rulonnogo tipa s nizkim gidravlicheskim soprotivleniem. Patent RF № 2671723 C1. 13.12.2017. Byul. 31. (In Russ.). EDN: https://elibrary.ru/AAVAQO.
65. Konovalov DN. Elektrobarmembrannyi apparat rulonnogo tipa. Patent RF № 2826576 C1. 28.11.2023: Byul. 26. (In Russ.). EDN: https://elibrary.ru/FBDEZW.
66. Konovalov DN, Lazarev SI. Elektrobarmembrannyi apparat rulonnogo tipa. Patent RF № 2838328 C1. 19.12.2024. Byul. 11. (In Russ.). EDN: https://elibrary.ru/BVMKBO.
67. Kochetov VI, Lazarev SI, Popov VY. Membrannyi apparat kombinirovannogo tipa. Patent RF № 2496560 C1. 10.04.2012. Byul. 30. (In Russ.). EDN: https://elibrary.ru/VVMRFD.
68. Lazarev SI, Khorokhorina IV, Kovalev SV, Mihajlin MI, Lazarev DS. Elektrobarmembrannyi apparat kombinirovannogo tipa. Patent RF № 2712599 C1. 19.12.2024. Byul. 11. (In Russ.). EDN: https://elibrary.ru/XVDWJQ.
69. Lazarev SI, Konovalov DN, Shel' NV, Malin PM, Konovalov DD, Ignatov NN. Elektrobarmembrannyi apparat kombinirovannogo tipa. Patent RF № 2804723 C1. 06.03.2023. Byul. 28. (In Russ.). EDN: https://elibrary.ru/CGTAPA.
70. Kochetov VI, Lazarev SI, Popov VY, et al. Raschet i proektirovaniya membrannogo agregata dlya ochistki stochnykh vod. Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki. 2014;19(6):1883-1888. (In Russ.). EDN: https://elibrary.ru/THEUKJ.
71. Lazarev SI, Lomakina OV, Bulanov VE, et al. Raschet na prochnost' elementov baromembrannogo apparata kombinirovannogo tipa. Vestnik mashinostroeniia. 2022;(10):3-8. (In Russ.). DOI:https://doi.org/10.36652/0042-4633-2022-10-3-8. EDN: https://elibrary.ru/XCHQKI.




