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Выводы. Проведенное исследование показало, что применение внешнего быстродейству-
ющего высокоточного АЦП в сочетании с микроконтроллером позволяет достичь частоты работы 
ИСН порядка 40 КГц, которая ограничивается производительностью процессора, а также повысить 
качество стабилизации выходного напряжения. 
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УДК 539.3                                                                                                                                А.Д. Матвеев 
 

РАСЧЕТ ТРЕХМЕРНЫХ КОМПОЗИТНЫХ БАЛОК СЛОЖНОЙ  
ФОРМЫ С ПРИМЕНЕНИЕМ ДВУХСЕТОЧНЫХ КОНЕЧНЫХ ЭЛЕМЕНТОВ*  

 
 В данной работе изложена процедура построения двухсеточных конечных элементов 
(ДвКЭ) для расчета трехмерных упругих композитных балок, имеющих постоянное поперечное 
сечение сложной формы. Предлагаемые ДвКЭ описывают трехмерное напряженное состояние в 
композитных балках, учитывают их неоднородную структуру и сложную форму, порождают 
дискретные модели малой размерности. Реализация метода конечных элементов для двухсе-
точных дискретных моделей трехмерных композитных балок требует меньше объема памяти 
ЭВМ и временных затрат, чем для базовых моделей.  

Ключевые слова: композиты, упругость, балки, метод конечных элементов, двухсеточ-
ные конечные элементы. 
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THE CALCULATION OF THE THREE-DIMENSIONAL IRREGULAR - SHAPED COMPOSITE BEAMS 
USING THE DOUBLE-GRID FINITE ELEMENTS 

 
 The procedure of constructing the two-grid finite elements (TgFE) in order to calculate the three-
dimensional elastic composite beams having the constant cross section of the complex shape is presented 
in the article. The proposed TgFE describe the three-dimensional tense state in the composite beams, take 
into account their heterogeneous structure and complex form, generate discrete models of low dimension. 
Implementation of the finite element method for two-grid discrete models of the three-dimensional compo-
site beams requires less computer memory and time costs than for the base models. 

Key words: composites, elasticity, beams, finite element method, two-grid finite elements. 
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 Введение. Расчет по методу конечных элементов (МКЭ) упругих трехмерных композитных 
балок со сложным поперечным сечением с учетом их формы и структуры сводится к построению 
базовых дискретных моделей высокого порядка [1, 2],  что вызывает трудности при реализации 
МКЭ на ЭВМ. В [3, 4] разработаны многосеточные конечные элементы (МнКЭ) формы прямоуголь-
ного параллелепипеда, которые проектируются на основе базовых дискретных моделей и порож-
дают многосеточные дискретные модели трехмерных тел меньшей размерности, чем базовые. 
  В данной работе изложена процедура построения трехмерных двухсеточных конечных 
элементов (ДвКЭ) сложной формы. Предлагаемые ДвКЭ применяются для расчета трехмерных 
упругих композитных балок, имеющих постоянное поперечное сечение сложной формы. Пусть 
трехмерная композитная балка сложной формы расположена в декартовой системе координат 
Oxyz  так, что ось Oy  параллельна оси балки, а поперечное сечение балки лежит в плоскости Oxz  

(рис. 1). Балка представлена шестигранными ДвКЭ a
eV (рис. 2), 24,...,1e . 

                     
Рис. 1. Балка сложной формы 

 
 Основные положения процедуры построения ДвКЭ рассмотрим на примере построения ше-

стигранного ДвКЭ a
eV , показанного на рисунке 2. 

                                                      

Рис. 2. Шестигранный ДвКЭ 
a

eV  

  

Для построения ДвКЭ 
a

eV  используем две вложенные сетки: мелкую и крупную. Мелкая 

сетка a
eh  порождена базовым разбиением ДвКЭ 

a
eV , которое учитывает его неоднородную струк-

туру и состоит из конечных элементов 1-го порядка формы куба (шестигранника, треугольной пря-

мой призмы [1, 6]). На мелкой сетке определяем крупную сетку 
a
eH , для узлов которой вводим це-

лочисленную систему координат ijk . Причем оси kji ,,  совпадают соответственно с осями Ox , 
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Oy , Oz  декартовой системы координат Oxyz  ДвКЭ a
eV . На рисунке 2 показана мелкая сетка ба-

зового разбиения ДвКЭ a
eV , узлы крупной сетки a

eH  отмечены точками, сечения волокон закраше-

ны, общее число узлов крупной сетки a
eH  равно 40, 5,...,1i , 5,...,1j , 3,...,1k . Отметим, что 

узлы крупной сетки a
eH  в плоскостях, параллельных плоскости Oxz, образуют четырехугольный 

конечный элемент (КЭ) ABCD  второго порядка (рис. 2), который имеет 8 узлов. На рисунке 2 узлы 

отмечены точками. Интерполяционный полином ),( zxPa  для КЭ ABCD  имеет вид 

                          2
8

2
7

2
6

2
54321),( xzazxazaxaxzazaxaazxPa  , 

где  ia – постоянные, 8,...,1i . 

 При построении базисных функций ),,( zyx  ДвКЭ a
eV  используем полиномы Лагранжа 

)(yL  и базовые функции ),( zxN , которые построены по алгоритмам МКЭ для двумерного ин-

терполяционного полинома ),( zxPa . Общее число базисных функций   равно 40 (т. е. 

40,...,1 ).  

 Базисную функцию   для узла   (крупной сетки a
eH  ДвКЭ a

eV ) представляем в следу-

ющем виде:  
                                               )(),(),,( yLzxNzyx   ,                                                                 (1) 

где 40,...,1 .  

 Отметим, что вместо полиномов Лагранжа )(yL  можно использовать базисные функции 

)(yN n
 , отвечающие интерполяционному полиному )(yPn  n -го порядка. Для ДвКЭ a

eV  имеем 

4n , т.е. полином )(4 yP  имеет вид  

                                               4
5

3
4

2
3214 )( ybybybybbyP  , 

где ib  – постоянные, 5,...,1i . 

 Функции перемещений au , av , aw  ДвКЭ a
eV  (построенные на крупной сетке a

eH ) пред-

ставим в виде 

                                     



40

1

 


 uua ,  




40

1

 


 vva ,  




40

1

 


 wwa ,                                             (2) 

где  ,  wvu ,,  – базисная функция и значения функций перемещений au , av , aw   -го 

узла крупной сетки a
eH , 40,...,1 . 

 Пусть 
Ta

e wwvvuu }...,,,...,,,...,,{ 401401401q есть вектор узловых перемещений круп-

ной сетки a
eH , т.е. a

eq  – вектор узловых перемещений ДвКЭ a
eV . На базовом разбиении ДвКЭ a

eV  

строим функционал 
a
eП  полной потенциальной энергии. Причем )( h

e
a
e

a
e ПП q , где 

h
eq  вектор 

узловых перемещений базового разбиения ДвКЭ 
a

eV . С помощью (2) вектор узловых перемещений 

h
eq  (т. е. вектор узловых перемещений мелкой сетки a

eh ) выражаем через вектор a
eq  узловых пе-

ремещений ДвКЭ 
a

eV . В результате имеем )( a
e

a
e

a
e ПП q . Из условия 0/)(  a

e
a
e

a
eП qq  полу-

чаем формулы для вычисления матрицы жесткости и вектора узловых сил ДвКЭ 
a

eV . 

 Достоинства ДвКЭ в композитных балках состоят в следующем: 
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 – описывают трехмерное напряженное состояние;  
 – учитывают неоднородную (микронеоднородную) структуру; 
 – учитывают сложную форму и сложный характер крепления балок;  
 – порождают дискретные модели малой размерности.  
 Реализация МКЭ для двухсеточных дискретных моделей трехмерных композитных балок 
требует меньше объема памяти ЭВМ и временных затрат, чем для базовых дискретных моделей.  
 Приведен пример расчета по МКЭ балки волокнистой структуры, имеющей поперечное се-
чение сложной формы. Анализ расчетов балки показывает высокую эффективность применения 
предлагаемых ДвКЭ. 
 1. Процедура построения двухсеточных конечных элементов сложной формы. Ос-

новные положения процедуры покажем на примере построения композитного ДвКЭ b
eV  сложной 

формы, который расположен в декартовой системе координат Oxyz  (рис. 3). ДвКЭ b
eV  есть прямо-

угольный параллелепипед размерами hhh 182418  , имеющий отверстие сложной формы. Счи-

таем, что между компонентами неоднородной структуры ДвКЭ b
eV  связи идеальны, а функции пе-

ремещений, напряжений и деформаций этих компонентов удовлетворяют закону Гука и соотноше-

ниям Коши, отвечающим трехмерной задаче теории упругости [5], т.е. во всей области ДвКЭ b
eV  

реализуется трехмерное напряженное состояние. ДвКЭ b
eV  армирован непрерывными волокнами, 

параллельнными оси Oy . Область ДвКЭ b
eV  представляем базовым разбиением, состоящим из 

однородных односеточных КЭ h
jV  1-го порядка формы куба со стороной h  [1], ;,...,1 Mj   где M

– общее число КЭ h
jV . На рисунке 3 показано базовое разбиение ДвКЭ b

eV  на КЭ h
jV  в плоскости 

Oxz, сечения волокон (размерами hh ) закрашены. Базовое разбиение ДвКЭ b
eV  учитывает его 

неоднородную структуру и порождает мелкую узловую сетку h
iV . На мелкой сетке h

iV  определяем 

крупную сетку b
eH . На рисунке 3 узлы сетки b

eH  отмечены точками. Общее число узлов крупной 

сетки b
eH  равно 60. Крупная сетка H

iV  вложена в сетку bH  формы прямоугольного параллелепи-

педа размерности 321 nnn  , которая расположена в целочисленной системе координат kji ,, ; 

1,...,1 ni  , 2,...,1 nj  , 3,...,1 nk   (рис. 4), 41 n , 52 n , 43 n , узлы сетки b
eH  отмечены 

точками. Заметим, что не все узлы сетки bH  являются узлами крупной сетки b
eH . 

 

 

 

Рис. 3. ДвКЭ 
b
eV  сложной формы                              Рис. 4. Сетка bH  
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 При построении базисных функций перемещений ),,( zyxijk  ДвКЭ b
eV  используем поли-

номы Лагранжа )(yL j  и двумерный интерполяционный полином ),( zxPb . Общее число базисных 

функций ijk  равно 60. Отметим, что узлы крупной сетки b
eH  в плоскостях, параллельных плоскости 

Oxz, образуют прямоугольный КЭ ABCD 3-го порядка (см. рис. 3), который имеет 12 узлов (узлы 

отмечены точками). Интерполяционный полином ),( zxPb  для КЭ ABCD  (см. рис. 3) имеет вид  

  
3

12
3

11
3

10
3

9
2

8
2

7
2

6
2

54321),( zaxazxaxzaxzazxazaxaxzazaxaazxPb  , 

где  ia – постоянные, 12,...,1i . 

 Базисную функцию ),,( zyxijk  для узла kji ,,  (крупной сетки b
eH  ДвКЭ b

eV ) с координа-

тами ix , jy , kz  представляем в следующем виде:  

                                               )(),(),,( yLzxNzyx jikijk  ,                                                                (3) 

где ),( zxNik  – базисные функции перемещений четырехугольного КЭ ABCD  (см.рис. 3), постро-

енные по МКЭ и отвечающие полиному ),( zxPb , 4,...,1i , 5,...,1j , 4,...,1k ; )(yL j – поли-

номы Лагранжа, которые имеют вид 

                                                   







5

,1

)(

j j
j

yy

yy
yL

 

 .                                                                  (4) 

 Узлу kji ,,  крупной сетки b
eH  ДвКЭ b

eV  определим число   и введем обозначение 

ijkN   , 60,...,1 . Тогда функции перемещений bu , bv , bw  ДвКЭ b
eV  (построенные на 

крупной сетке b
eH ) представим в виде 

                                 



60

1

 


 uub ,  




60

1

 


 vvb ,  , 

40

1







 wwb                                                     (5) 

где  ,  wvu ,,  – базисная функция и значения функций перемещений bu , bv , bw   -го 

узла крупной сетки b
eH , 60,...,1 . 

 Пусть 
Tb

e wwvvuu }...,,,...,,,...,,{ 601601601q есть вектор узловых перемещений крупной 

сетки b
eH , т.е. вектор узловых перемещений ДвКЭ 

b
eV . Полную потенциальную энергию b

eП  базо-

вого разбиения ДвКЭ b
eV  представим в форме [1, 6] 

                                 ,
1

)][
2

1
(




M

j

j
T
jj

h
j

T
j

b
e KП Pqqq                                                            (6) 

где ][ h
jK  – матрица жесткости; jj qP ,  – векторы узловых сил и перемещений КЭ h

jV  базового 

разбиения ДвКЭ; T  – транспонирование.  

 Используя (5), вектор jq  узловых перемещений КЭ h
jV  выражаем через вектор 

b
iq  узло-

вых перемещений ДвКЭ 
b
eV . В результате получим равенство 

                                                         b
i

b
jj A qq  ][ ,                                                                                  (7) 
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где  ][ b
jA  – прямоугольная матрица, .,...,1 Mj   

 Подставляя (7) в выражение (6), из условия 0/  b
e

b
eП q  получаем уравнение 

a
e

b
e

b
eK Fq  ][ , где  

                                   



M

j

b
j

h
j

Tb
j

b
e AKAK

1

]][[][][ ,  



M

j

j
Tb

j
b
e A

1

][ PF ,                                          (8) 

здесь b
e

b
eK F  ,][  – матрица жесткости и вектор узловых сил ДвКЭ b

eV . 

 Отметим, что процедура построения ДвКЭ неоднородной структуры формы прямой тре-
угольной призмы аналогична процедуре п. 1. На рисунке 5 показаны мелкая и крупная сетки ДвКЭ 
формы прямой треугольной призмы, узлы крупной сетки отмечены точками, сечение волокна, па-
раллельного оси Oy , закрашено. 

 
Рис. 5. ДвКЭ формы треугольной призмы 

 
 Узлы крупной сетки в плоскости Oxz образуют треугольный КЭ 2-го порядка (6 узлов), для 
аппроксимации перемещений которого используем интерполяционный полином вида 

2
6

2
54321),( zaxaxzazaxaazxP   [6], где constai  . 

 2. Результаты расчетов. В качестве модельной задачи рассмотрим расчет композитной 

консольной балки 0V  волокнистой структуры (рис. 6). Балка 0V  расположена в декартовой системе 

координат Oxyz , при 0y  имеем 0 wvu , т.е. балка жестко закреплена. Волокна парал-

лельны оси Oy . Базовое разбиение 0R  балки 0V  состоит из однородных КЭ h
jV  1-го порядка 

формы куба со стороной h .  

                                   
Рис. 6. Балка 0V  

  

Разбиение 0R  учитывает неоднородную структуру балки и порождает мелкую сетку ah  

размерности 1919319  . Двухсеточная модель балки 0V  состоит из ДвКЭ 
b
eV  с размерами 

hhh 182418   (см. рис. 3), построенные по процедуре п. 1, Ne ,...,1 , N  – общее число ДвКЭ 

b
eV , для балки 0V  6N . На рисунке 6 показано разбиение балки 0V  на ДвКЭ 

b
eV . В узлах мелкой 

сетки ah  базового разбиения балки 0V  с координатами ix , jy , hz 18 , где )1(6  hxi , 
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3,...,1 , )1(612  hhy j , 31,...,1 , на балку 0V  действуют вертикальные силы 

015,0zP . На рисунке 6 схематично показаны силы zP . Модуль Юнга связующего материала 

равен 1, волокна – 10, коэффициент Пуассона для волокна и связующего материала равен 0,3. 
Длина балки hL 192 , поперечное сечение балки с характерными размерами hh 1818   имеет 
отверстие сложной формы (см. рис. 3).  

 Результаты расчетов балки 0V  показывают следующее. Максимальное эквивалентное 

напряжение 659,3h  (перемещение 697,224hw ) двухсеточной дискретной модели hR  бал-

ки 0V  отличается от максимального эквивалентного напряжения 940,30   (перемещения 

802,2280 w ) базовой дискретной модели 0R  на 7,13 %  (на 1,79 %). Размерность базовой мо-

дели 0R  балки 0V  равна 178560, ширина ленты системы уравнений (СУ) МКЭ равна 1985. Двухсе-

точная дискретная модель hR  балки 0V  имеет 1152 узловых неизвестных (т.е. имеет в 155 раз 

меньше неизвестных базовой модели 0R ), ширина ленты СУ МКЭ равна 359 (в 5,5 раза меньше 

ширины ленты СУ МКЭ модели 0R ). Реализация МКЭ для двухсеточной модели hR  требует в 855 

раз меньше объема памяти ЭВМ, чем для базовой модели 0R . Эквивалентные напряжения опре-

деляются по 4-й теории прочности. 
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МОДЕЛИРОВАНИЕ СЛОЖНОГО НОРМАЛЬНОГО УДАРА ПО СЛОИСТО-НЕОДНОРОДНОЙ   
ПРЕГРАДЕ 

 
В работе проведено моделирование взаимодействия большого числа жестких цилиндри-

ческих ударников с упругой, слоисто-неоднородной плитой. Решение основано на эффективном 
численном решении задачи о взаимодействии одного жесткого цилиндра с неоднородной прегра-
дой и алгоритме сборки полного решения путем суперпозиции элементарных решений.   

Ключевые слова: упругая среда, суперпозиция, численное решение.  
 

                                                                                                                    I.O. Bogulskii 
 
MODELING OF THE COMPLEX NORMAL IMPACT ON THE LAYERED-INHOMOGENEOUS BARRIER 

 
The interaction modeling of a large number of rigid cylindrical projectiles with the elastic, lay-

ered-inhomogeneous plate is conducted in the article. The solution is based on the task efficient numerical 
solution of one rigid cylinder interaction with the inhomogeneous barrier and on the algorithm of the com-
plete solution integration by superposition of elementary solutions.  

Key words: elastic medium, superposition, numerical solution. 
 


