
Вестник КрасГАУ. 2012.  №  10  
 

 7 

 
 
 

 
 
 

 

УДК 519.644.7                                        К.А. Кириллов 
 

МИНИМАЛЬНЫЕ КУБАТУРНЫЕ ФОРМУЛЫ, ТОЧНЫЕ ДЛЯ ПОЛИНОМОВ ХААРА МАЛЫХ СТЕПЕНЕЙ 
В ДВУМЕРНОМ СЛУЧАЕ 

 
В работе получена нижняя оценка числа узлов кубатурных формул, точных для полиномов Хаара в 

двумерном случае, для d=2 и d=3 приведены примеры минимальных формул, обладающих d-свойством. 
Ключевые слова: минимальные кубатурные формулы, функции Хаара, полиномы Хаара, d-

свойство. 
 

K.A. Kirillov 
 

MINIMAL CUBATURE FORMULAS EXACT FOR HAAR POLYNOMIALS OF LOW DEGREES  
IN TWO–DIMENSIONAL CASE 

 
The lower assessment for cubature formulas node number that are exact for Haar polynomials in two-

dimensional case is obtained. Examples of minimal cubature formulas with Haar d-property for d=2 and d=3 are 
given in the article.  

Key words: minimal cubature formulas, Haar functions, Haar polynomials, d-property. 
 
 

Введение. Значительный интерес в теории приближенного интегрирования вызывает задача по-
строения минимальных кубатурных (квадратурных) формул, точных для некоторого заданного набора функ-
ций, т. е. таких формул, которые точно интегрируют указанные функции, используя наименьшее возможное 
число узлов. Многие работы известных авторов посвящены проблеме построения минимальных формул 
приближенного вычисления интегралов, точных для алгебраических и тригонометрических многочленов. 

Кубатурные формулы, точные на алгебраических полиномах, восходят еще к Гауссу. Минимальные 
формулы приближенного вычисления интегралов, точные на тригонометрических многочленах, рассматри-
вались в работах И.И. Кеда, М.В. Носкова, И.П. Мысовских и других авторов. Кубатурные формулы, точные 
для системы функций Хаара, можно найти в монографии И.М. Соболя [1], использовавшего точность формул 
приближенного интегрирования на конечных суммах Хаара при выводе оценок погрешности этих формул. 
Вопрос минимизации числа узлов не рассматривался. 

Минимальные квадратурные формулы с произвольной суммируемой функцией, точные для функций 
Хаара, были описаны в [2]. 

В настоящей работе в двумерном случае выведена нижняя оценка числа узлов кубатурных формул, 
обладающих d-свойством (d > 1), – формул, точных для полиномов Хаара степеней, не превосходящих за-
данного числа d. 

Для d = 2 и d = 3 приведены примеры формул, обладающих d-свойством, минимальность которых ус-
танавливается с помощью полученной оценки. 

1. Основные определения и вспомогательные утверждения 
В настоящей работе используется оригинальное определение функций χm,j(x), введенное А. Хааром [3], от-

личное от определения этих функций, приведенного И.М. Соболем [1]. 
Двоичными промежутками lm,j назовем промежутки с концами в точках   (j−1)/2m−1, j/2m−1 (m = 1,2,..., j = 

1,2,..., 2m−1). Если левый конец двоичного промежутка совпадает с 0, то будем считать этот промежуток замк-
нутым слева, если правый конец совпадает с 1  –  замкнутым справа. Остальные двоичные промежутки счи-
таются открытыми. Левую и правую половины lm,j (без середины этого двоичного промежутка) будем обозна-

чать jml ,  и jml ,  соответственно. 
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Двоичными прямоугольниками назовем множества 
2211 ,, jmjm ll , замкнутыми двоичными прямо-

угольниками – замыкания этих множеств, mn = 1,2,..., jn = 1,2,...,
1

2 nm
, n = 1,2. 

Система функций Хаара строится группами: группа номер m содержит 2m−1 функций χm,j(x), где m = 
1,2,..., j = 1,2,...,2m−1. Функции Хаара χm,j(x) определим следующим образом: 
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В систему функций Хаара включают также функцию χ0,0(x)≡1, которая остается вне групп. 
В двумерном случае полиномами Хаара степени d назовем линейные комбинации с вещественными 

коэффициентами мономов Хаара: 
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причем хотя бы один из коэффициентов при мономах Хаара степени d (m1+m2=d) отличен от нуля. 

Будем рассматривать кубатурные формулы 
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1 ]1,0[),( jj xx   –  узлы формулы (1); Cj  –  коэффициенты при ее узлах (вещественные числа);  

 j = 1,2,…,N;   f (x1, x2)  –  функция, определенная и суммируемая на множестве [0,1]2. 
Будем говорить, что формула (1) обладает d-свойством Хаара, или просто d-свойством, если она точ-

на для любого полинома Хаара P(x1,x2) степени, не превосходящей d, то есть Q [P] = I [P]. 
Приведем вспомогательные утверждения, которые понадобятся для вывода нижней оценки числа уз-

лов кубатурных формул (1), обладающих d-свойством. 
В [2] показано, что существуют полиномы Хаара степени m, которые удовлетворяют равенству 
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где m = 1,2,..., j = 1,2,...,
m2 . 

Имеет место 
Лемма 1 [2]. Функции κm,1(x), κm,2(x), ..., κm,2

m(x) образуют базис в линейном пространстве полиномов 
Хаара степеней, не превосходящих m. 

Функции κd,k(x1), κd,k(x2), κl,i(x1)κm,j(x2) будем называть κ-мономами степени d, где k = 1,2,...,2d, l+ m = d, i 
= 1,2,...,2l, j = 1,2,...,2m. 

Из леммы 1 следует 
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Лемма 2. Кубатурная формула (1) обладает d-свойством тогда и только тогда, когда она точна для 
всех κ-мономов степени d. 

Из равенства (2) следует, что каждый замкнутый двоичный прямоугольник площади 2−d является но-
сителем некоторого κ-монома степени d, причем ln+1,i × lm+1,j = supp{κn,i(x1)κm,j(x2)}, ln+1,i × [0, 1] = supp{κn,i(x1)}, 
[0,1] × lm+1,j = supp{κm,j(x2)}, n,m = 1,2,..., i = 1,2,...,2n, j = 1,2,...,2m. 

Докажем следующие утверждения. 
Лемма 3. Если Kd (x1, x2) – произвольный κ-моном степени d, то 
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Доказательство. Из соотношения (2) следует, что Kd (x1, x2) = 2d во внутренних точках множества 

supp{Kd}. Учитывая, что supp{Kd} – двоичный прямоугольник площади 2−d, приходим к равенству (3). 
Лемма доказана. 
Лемма 4. В точках непрерывности функции Хаара χm,j(x) (m = 1,2,..., j = 1,2,...,2m−1) имеет место равен-

ство 
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Всюду, за исключением точек, в которых функции χk,i(x) и χm,j(x) одновременно терпят разрыв (если та-

кие точки существуют), произведение этих функций 
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где ji;km  при m = k. 

Равенство (4) следует из соотношения (2), справедливость равенства (5) устанавливается непосред-
ственно. 

Лемма 5. Если кубатурная формула (1) обладает d-свойством, то каждый замкнутый двоичный пря-
моугольник площади 2−d содержит хотя бы один узел этой формулы. 

Доказательство. Предположим, что некоторый замкнутый двоичный прямоугольник площади 2−d не 
содержит ни одного узла кубатурной формулы (1). Обозначим через Kd  (x1,x2) κ-моном степени d, носителем 
которого является этот прямоугольник. Тогда QN [Kd] = 0, но в силу леммы 3 I [Kd] = 1. Полученное противоре-
чие с условием точности формулы для Kd(x1,x2) доказывает лемму. 

2. Нижняя оценка числа узлов кубатурных формул, обладающих       d-свойством 
В настоящем разделе доказываются теоремы 1, 2, следствием которых является нижняя оценка чис-

ла узлов кубатурных формул (1), обладающих d-свойством (утверждение теоремы 3). 
Теорема 1. Если координаты узлов кубатурной формулы (1), обладающей d-свойством (d > 1), не яв-

ляются точками разрыва ни одной из функций Хаара (d−1)-й группы, то число узлов этой формулы удовле-
творяет следующему неравенству:  

.2dN  
Доказательство. Воспользуемся техникой доказательств, примененной в [4]. 
Положим f1(x1, x2) ≡ 1, f2(x1,x2) = χ1,1(x1), f3(x1,x2) = χ1,1(x2), f4(x1,x2) = = χ1,1(x1)χ1,1(x2), f5(x1, x2) = χ2,1(x1), 

f6(x1, x2) = χ2,2(x1), f7(x1, x2) = χ2,1(x1)χ1,1(x2), f8(x1,x2) = χ2,2(x1)χ1,1(x2),..., ),( 2112 1 xxf d  = χd−1,1(x1), 

),( 2122 1 xxf d  = χd−1,2(x1),..., )(),( 12,12123 22 xxxf dd d
, ),( 21123 2 xxf d  = χd−1,1(x1)χ1,1(x2), 

),( 21223 2 xxf d  = = χd−1,2(x1)χ1,1(x2),…, )(),( 12,1212 2 xxxf dd d
 χ1,1(x2). 
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где 
'll  – символ Кронекера. 

Введем в рассмотрение матрицы 
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Тогда равенство (6) равносильно соотношению 
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где E – единичная матрица порядка 2d. Так как ранг произведения матриц не превосходит ранга каждого из 
сомножителей, то 
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Теорема доказана. 
Теорема 2. Если одна из координат хотя бы одного узла кубатурной формулы (1), обладающей d-

свойством )2(d , является точкой разрыва некоторой функции Хаара (d−1)-й группы, то для числа узлов 

этой формулы имеет место следующее неравенство:  

     .12 1dN       (7) 
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Доказательство. Для определенности будем считать, что первая координата некоторого узла 
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pp xx  кубатурной формулы (1) является точкой разрыва одной из функций Хаара (d−1)-й группы, т. е. 
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Рассмотрим следующие замкнутые двоичные прямоугольники площади 2−d: ]1,0[]2,0[ d
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В соответствии с леммой 5 каждый из них содержит хотя бы один узел кубатурной формулы (1). Так 

как эти прямоугольники попарно не пересекаются и их число равно 2d−1, то, учитывая узел ),( )(
2

)(
1

pp xx , не 

принадлежащий ни одному из указанных прямоугольников, получаем неравенство (7). 
Теорема доказана. 
Из теорем 1, 2 следует 

Теорема 3. Для числа узлов кубатурной формулы (1), обладающей d-свойством )2(d , справед-

лива оценка (7). 
3. Примеры минимальных кубатурных формул 

Для d = 2 и d = 3 приведем примеры кубатурных формул (1), обладающих d-свойством, с числом уз-
лов N = 2d−1+1. 

Несложно доказать точность первой из этих формул для всех κ-мономов степени 2, а второй — для 
всех κ-мономов степени 3, откуда на основании леммы 2 следует, что они обладают d-свойством для d = 2 и 
d = 3 соответственно. В силу теоремы 3 указанные кубатурные формулы являются минимальными. 
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Пример_2. d = 3, N = 5: )2/1,8/1(),( )1(
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C2=1/8, C3=1/4, C4=1/4, C5=1/8. 
 

Заключение 
 

В [1] рассмотрены кубатурные формулы 
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1  , образующими Πτ-сетки – сетки, состоящие из N = 2ν узлов и 

удовлетворяющие условию: каждый двоичный параллелепипед объема 2τ−ν содержит 2τ точек сетки (ν > τ). 
В [1] установлено, что эти формулы обладают (ν−τ)-свойством, а также показано, что при n = 2 и n = 3 

Πτ -сетки со сколь угодно большим числом N = 2ν узлов существуют для любых значений τ = 0,1,2,... 
Следовательно, в двумерном случае при фиксированном d минимальными формулами приближенно-

го интегрирования на множестве тех кубатурных формул вида (8), которые обладают d-свойством, являются 
формулы указанного вида с 2d узлами, образующими Π0-сетки. 

Заметим, что число узлов, построенных в примерах 1, 2 минимальных кубатурных формул, обладаю-
щих d-свойством, меньше чем 2d. 
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ОБ ОДНОЙ КАЧЕСТВЕННОЙ МЕТОДИКЕ ОЦЕНКИ РИСКОВ ЦЕЛЕСООБРАЗНОСТИ ИНВЕСТИРОВАНИЯ 

В РАЗЛИЧНЫЕ МОМЕНТЫ ВРЕМЕНИ 
 

В статье рассмотрена качественная методика оценки рисков инновационной целесообразности 
инвестирования в различные моменты времени. Предложено использовать для прогнозирования метод 
числовых рядов.  
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ABOUT ONE QUALITATIVE TECHNIQUE FOR THE INVESTMENT EXPEDIENCY RISKS ASSESSMENT  
DURING THE VARIOUS TIME MOMENTS 

 
The qualitative technique for the investment innovative expediency risks assessment during the various time 

moments is considered in the article. The numerical ranks method is offered to use for forecasting.  
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Введение. Основная характеристика инвестиционного проекта – финансовый поток расходов и дохо-

дов. Этот поток представляет собой модель предполагаемого потока платежей по проекту и строится на ос-
нове совокупности прогнозных оценок на время реализации проекта. Инвестиционный проект, рассматри-
ваемый в условиях определенности, описывается своим чистым денежным потоком  R0, R1, R2,…, Rn  в мо-
менты  времени  t = 0, t1, t2,…, tn  соответственно, где   0 < t1 < t2 < …< tn = T. Начало проекта  t = 0 – момент 
вложения исходной инвестиции в размере  I, T – срок проекта [3]. 

Для оценки эффективности инвестиционного проекта используют четыре показателя [3], основанные 
на дисконтировании членов финансового потока проекта к моменту t = 0: 

 чистая современная стоимость проекта (net present value, NPV); 

 внутренняя норма доходности (internal rate of return, IRR); 

 срок окупаемости (discounted payback period, DPP); 

 индекс доходности (profitability index, PI). 
Каждый из показателей – это результат сопоставления современных стоимостей инвестиций в проект 

и отдач от инвестиций. Для дисконтирования членов финансового потока проекта применяется процентная 
ставка r. Остановимся на показателе NPV. 

Соотношение для NPV имеет следующий вид: 
 


